Biodiversity

Species Profile and Threats Database


For information to assist proponents in referral, environmental assessments and compliance issues, refer to the Policy Statements and Guidelines (where available), the Conservation Advice (where available) or the Listing Advice (where available).
 
In addition, proponents and land managers should refer to the Recovery Plan (where available) or the Conservation Advice (where available) for recovery, mitigation and conservation information.

EPBC Act Listing Status Listed marine
Listed migratory - Bonn, CAMBA, JAMBA, ROKAMBA
Adopted/Made Recovery Plans
Other EPBC Act Plans Background Paper to the Wildlife Conservation Plan for Migratory Shorebirds (Australian Government Department of the Environment and Heritage (AGDEH), 2005c) [Wildlife Conservation Plan].
 
Wildlife Conservation Plan for Migratory Shorebirds (Australian Government Department of the Environment and Heritage (AGDEH), 2006f) [Wildlife Conservation Plan].
 
Policy Statements and Guidelines Draft Significant impact guidelines for 36 migratory shorebirds Draft EPBC Act Policy Statement 3.21 (Department of the Environment, Water, Heritage and the Arts (DEWHA), 2009aj) [Admin Guideline].
 
Draft background paper to EPBC Act policy statement 3.21 (Department of the Environment, Water, Heritage and the Arts (DEWHA), 2009bc) [Admin Guideline].
 
Federal Register of
    Legislative Instruments
List of Migratory Species (13/07/2000) (Commonwealth of Australia, 2000b) [Legislative Instrument].
 
Declaration under section 248 of the Environment Protection and Biodiversity Conservation Act 1999 - List of Marine Species (Commonwealth of Australia, 2000c) [Legislative Instrument].
 
Environment Protection and Biodiversity Conservation Act 1999 - Listed Migratory Species - Approval of an International Agreement (Commonwealth of Australia, 2007h) [Legislative Instrument].
 
Scientific name Phalaropus lobatus [838]
Family Scolopacidae:Charadriiformes:Aves:Chordata:Animalia
Species author (Linnaeus,1758)
Infraspecies author  
Reference  
Distribution map Species Distribution Map

This is an indicative distribution map of the present distribution of the species based on best available knowledge. See map caveat for more information.

Illustrations Google Images

Scientific name: Phalaropus lobatus

Common name: Red-necked Phalarope

Other names: Northern Phalarope, Round-nosed Phalarope

The Red-necked Phalarope is the smallest Phalarope and member of the Phalaropodinae family. The species has a length of 18–19 cm, a wingspan of 31–34 cm and a weight of 34 g. It is a distinctive marine wader with a small head, slender neck, short straight needle-like bill, short legs and feet with lobed toes. In flight, all plumages show bold white wing-bar, white sides to a dark-centred rump and uppertail coverts. The species has white underwings with contrasting dark trailing edge and markings on the coverts. The Red-necked Phalarope along with Grey Phalaropes are the only waders occurring regularly at sea. They mainly winter at sea around the tropics, but are occasionally seen on coastal and inland wetlands (Higgins & Davies 1996).

Distribution overview
The Red-necked Phalarope is a regular at the Port Hedland Saltworks and Rottnest Island, Western Australia. The species is also found at the ICI Saltworks in South Australia.

Queensland, NSW and Victoria distribution
In Queensland the species has been found at Lake Moondarra, Mount Isa, Hood's Lagoon and Helidon. In NSW the Red-necked Phalarope has been reported near Guyra. In Victoria the species has been sighted at the Werribee Sewage Farm, Altona, Seaholme, Lake Connewarre, Lake Tutchewop, Lake Victoria, Point Lonsdale, Lake Murdeduke and Lake Buloke. There have also been unconfirmed reports at the Laverton Saltworks (Higgins & Davies 1996).

South Australia and Western Australia distribution
In South Australia the species has been reported at Langhorne Creek, Whyalla, the Price Saltfields, the ICI Saltfields (St Kilda), around Magrath Flat, central Coorong and near Port Gawler. In Western Australia the species has been seen on Rottnest Island, Pelican Point, the Swan River, the Port Hedlands Saltworks, the Eyre Bird Observatory and Hinds Lake Nature Reserve (Higgins & Davies 1996).

Northern Territory distribution
In the Northern Territory the species has been seen at Lee Point, Darwin and the Palmerston Sewage Farm. There has also been an unverified report at the Alice Springs Sewage Farm (Higgins & Davies 1996).

Breeding season distribution
The Red-necked Phalarope breeds in the Arctic and subarctic North America, Europe and Russia. The species is known to breed in west and north Alaska, northern Canada; north from Hooper Bay and east through north Mackenzie, Southampton Island to Penisule d'Ungava in north-west Quebec and then north to Melville, Bathurst, Devon and south Baffin Islands. It also breeds in south-west Greenland, with scattered records around the east coast throughout Iceland. There are scattered records on the north and west British Isle. In Scandinavia the species is found in east and north Norway, west and north Sweden and northern Finland; through the Kola Peninsula and east through northern Russia. In Russia the species is found at the Yamal Peninsula, south and central Taymyr Peninsula to the Bering Strait. In eastern Russia the species is found south through the Koryak Highlands, Kamchatka Peninsula, north on Kurile Island and north of Sakhalin Island. It is also found north in the Sea of Okhotsk and west to the Magadan region (Higgins & Davies 1996).

Non-breeding season distribution
During the non-breeding season the Red-necked Phalarope is found at sea in three distinct regions. The first is the the outer regions of the Humbolt Current off the coasts of Ecuador and Peru, between the equator and 20° S, straggling to the Chilean coast and south to Patagonia. Secondly the species is found in the southern Arabian Peninsula; mostly from the Gulf of Aden and east to the Gulf of Oman. They are occasionally found in small numbers in east Africa, from Somalia and Ethiopia, south to Zimbabwe and South Africa. They are also seen in Pakistan, north-west India and Bangladesh. The third region is from the southern Philippines, south-west to Makassar Strait, south to the seas south of Lombok, Sumbawa and Timor. They are also found east from the Makassar Strait, through Sulawesi and Moluccas to Banda and the Arafura Seas. They are rarely seen in the south-east, south to Frederik Hendrik Island and Merauke. They are seen of the west and north coasts of New Guinea, from west Papuan Island and Vogelkop, east to west Huon Peninsula and the Bismarck Archipelago. They are recorded in Papua New Guinea, North to Massau Island and the Admiralty Group (Higgins & Davies 1996).

An estimated 100 000–1 000 000 Red-necked Phalaropes occupy the East Asian-Australasian Flyway. During the non-breeding season, 13 important sites have been identified (none in Australia). Note that an important site is calculated using the 1% criterion (i.e. a site is considered important if it is occupied by more then 1% of the bird's total population). The global population of the Red-necked Phalarope is estimated at 3 500 000. A table of important sites and there populations is given below (Bamford et al. 2008):


Site Country Max Count
Komuke-ko Japan 30 000
Babushkina Bay Russia 5000
Lake Dakataua Papua New Guinea 4500
Penzhina River mouth Russia 3461
Takamatsu, Kahoku Kaigan Japan 2159
Yancheng National Nature Reserve China 1728
Dongsha Islands China 1728
Chiri-hama Japan 1221
Fuuren-ko (Onnetou ohashi) Japan 1000
Saigawa-karyuu Japan 1000
Uchiura Wan Japan 600
Terpeniya Bay Russia 300
Akashi-Iwayakouro Japan 300

During non-breeding period the Red-necked Phalarope occurs mainly at sea. In Australia it is recorded at both inland and coastal lakes/swamps, including highly saline waters and artificial wetlands notably saltfields (Higgins & Davies 1996).

There is limited information on the feeding habits of the Red-neck Phalarope both in Australia and the world. The species is known to take invertebrates in the open water, and very rarely on mudflats. While feeding, the Red-necked Phalarope spins in an anti-clockwise direction, occasionally fluttering and pecking at the surface of the water for disturbed insects. They have been observed feeding at the Port Hedland Saltworks, Western Australia (Higgins & Davies 1996).

The Red-necked Phalarope is commonly sighted in Australia from mid-October to early-April (Higgins & Davies 1996).

Global Threats
There are a number of threats that affect migratory shorebirds in the Flyway. The greatest threat is indirect and direct habitat loss (Melville 1997). Staging areas used during migration through eastern Asia are being lost and degraded by activities which are reclaiming the mudflats for development or developing them for aquaculture (Barter 2002, 2005c; Ge et al. 2007; Round 2006). This is especially evident in the Yellow Sea, where at least 40% of intertidal areas have been reclaimed. This process is continuing at a rapid rate and may accelerate in the near future (Barter 2002, 2005c). For example, in South Korea, the Mangyeung and Dongjin River estuaries each supported 5% of the combined estimated Flyway populations (and are the most important sites for this species on both northern and southern migration) but they are currently being reclaimed as part of the Saemangeum Reclamation Project (Barter 2002, 2005c). The 33 km sea-wall across these two estuaries was completed in April 2006, resulting in significant change in the 40 100 ha area (Barter 2005c).

Reclamation is also a threat in other areas of the Flyway, such as in Malaysia (Wei et al. 2006). In addition, water regulation and diversion infrastructure in the major tributaries have resulted in the reduction of water and sediment flows (Barter 2002; Barter et al. 1998).

Migratory shorebirds are also adversely affected by pollution, both on passage and in non-breeding areas (Harding et al. 2007; Melville 1997; Round 2006; Wei et al. 2006). Disturbance from human activities, including recreation, shellfish harvesting, fishing and aquaculture is likely to increase significantly in the future (Barter et al. 2005; Davidson & Rothwell 1993).

It is predicted that the rate of decrease in the intertidal area in the Yellow Sea will accelerate (Barter 2002). In addition, intensive oil exploration and extraction, and reduction in river flows due to upstream water diversion, are other potentially significant threats in parts of China where this species is present in internationally significant numbers (Barter 2005c; Barter et al. 1998).

Global warming and associated changes in sea level are likely to have a long-term impact on the breeding, staging and non-breeding grounds of migratory waders (Harding et al. 2007).

Hunting is still a very serious problem for waders in China, and this species is sometimes caught (Ming et al. 1998).

Australia
Within Australia, there are a number of threats common to most migratory shorebirds, including the Red-necked Phalarope.

Habitat loss
The loss of important habitat reduces the availability of foraging and roosting sites. This affects the ability of the birds to build up the energy stores required for successful migration and breeding. Some sites are important all year round for juveniles who may stay in Australia throughout the breeding season until they reach maturity. A variety of activities may cause habitat loss. These include direct losses through land clearing, inundation, infilling or draining. Indirect loss may occur due to changes in water quality, hydrology or structural changes near roosting sites (DEWHA 2009aj).

Habitat degradation
As most migratory shorebirds have specialized feeding techniques, they are particularly susceptible to slight changes in prey sources and foraging environments. Activities that cause habitat degradation include (but are not restricted to): (1) loss of marine or estuarine vegetation, which is likely to alter the dynamic equilibrium of sediment banks and mudflats; (2) invasion of intertidal mudflats by weeds such as cord grass; (3) water pollution and changes to the water regime; (4) changes to the hydrological regime and (5) exposure of acid sulphate soils, hence changing the chemical balance at the site (DEWHA 2009aj).

Disturbance
Disturbance can result from residential and recreational activities including; fishing, power boating, four wheel driving, walking dogs, noise and night lighting. While some disturbances may have only a low impact it is important to consider the combined effect of disturbances with other threats. Roosting and foraging birds are sensitive to discrete, unpredictable disturbances such as loud noises (i.e. construction sites) and approaching objects (i.e. boats). Sustained disturbances can prevent shorebirds from using parts of the habitat (DEWHA 2009aj).

Direct mortality
Direct mortality is a result of human activities around the migration pathways of shorebirds and at roosting and foraging sites. Examples include the construction of wind farms in migration or movement pathways, bird strike due to aircraft, hunting, chemical and oil spills (DEWHA 2009aj).

Governments and conservation groups have undertaken a wide range of activities relating to migratory shorebird conservation (AGDEH 2005c) both in Australia and in cooperation with other countries associated with the Flyway.

Australia
The Wildlife Conservation Plan for Migratory Shorebirds (AGDEH 2006f) outlines national activities to support the Flyway shorebird conservation initiatives and provides a strategic framework to ensure these activities and future research and management actions are integrated and remain focused on the long-term survival of migratory shorebird populations and their habitats.

Since 1996–97, the Australian Government has invested approximately $5 000 000 of Natural Heritage Trust (NHT) funding in projects contributing to migratory shorebird conservation (DEWHA 2007e). This funding has been distributed across a range of important projects, including the implementation of a nationally coordinated monitoring programme that will produce robust, long-term population data able to support the conservation and effective management of shorebirds and their habitat, migration studies using colour bands and leg flags, and development of a shorebird conservation toolkit to assist users to develop and implement shorebird conservation projects.

Birds Australia is currently co-ordinating the Shorebirds 2020 project, which aims to monitor shorebird populations at important sites throughout Australia. Birdlife International is identifying sites and regions which are important to various species of birds, including shorebirds, and the processes that are affecting them. The aim of these activities is to inform decisions on the management of shorebird habitat. It may be possible to rehabilitate some degraded wetlands or to create artificial wader feeding or roosting sites to replace those destroyed by development, such as by creating artificial sandflats and sand islands from dredge spoil and by building breakwaters (Dening 2005; Straw 1992a, 1999).

The Significant impact guidelines for 36 migratory shorebirds Draft EPBC Act Policy Statement 3.21 (DEWHA 2009aj) provides guidelines for determining the impacts of proposed actions on migratory shorebirds. The policy statement also provides mitigation strategies to reduce the level and extent of those impacts. The policy aims to promote ecologically sustainable development that allows for the continued ecological function of important habitat for migratory shorebirds (DEWHA 2009aj).

International
Australia has played an important role in building international cooperation to conserve migratory birds. In addition to being party to international agreements on migratory species, Australia is also a member of the Partnership for the Conservation of Migratory Waterbirds and the Sustainable Use of their Habitats in the East Asian-Australasian Flyway (Flyway Partnership), which was launched in Bogor, Indonesia on 6 November 2006. Prior to this agreement, Australia was party to the Asia-Pacific Migratory Waterbird Conservation Strategy and the Action Plan for the Conservation of Migratory Shorebirds in the East Asian-Australasian Flyway and the East Asian-Australasian Shorebird Site Network.

The East Asian-Australasian Flyway Site Network, which is part of the broader Flyway Partnership, promotes the identification and protection of key sites for migratory shorebirds. Australia has 17 sites in the network (Partnership EAAF 2008):

  • Kakadu National Park, Northern Territory (1 375 940 ha)
  • Parry Lagoons, Western Australia (36 111 ha)
  • Thomsons Lake, Western Australia (213 ha)
  • Moreton Bay, Queensland (113 314 ha)
  • Hunter Estuary, NSW (2916 ha)
  • Corner Inlet, Victoria (51 500 ha)
  • The Coorong, Lake Alexandrina & Lake Albert, South Australia (140 500 ha)
  • Orielton Lagoon, Tasmania (2920 ha)
  • Logan Lagoon, Tasmania (2320 ha)
  • Western Port, Victoria (59 297 ha)
  • Port Phillip Bay (Western Shoreline) and Bellarine Peninsula, Victoria (16 540 ha)
  • Shallow Inlet Marine and Coastal Park, Victoria
  • Discovery Bay Coastal Park, Victoria
  • Bowling Green Bay, Queensland
  • Shoalwater Bay, Queensland
  • Great Sandy Strait, Queensland
  • Currawinya National Park, Queensland

The following table lists known and perceived threats to this species. Threats are based on the International Union for Conservation of Nature and Natural Resources (IUCN) threat classification version 1.1.

Threat Class Threatening Species References
Uncategorised:Uncategorised:threats not specified Wildlife Conservation Plan for Migratory Shorebirds (Australian Government Department of the Environment and Heritage (AGDEH), 2006f) [Wildlife Conservation Plan].

Australian Government Department of the Environment and Heritage (AGDEH) (2005c). Background Paper to the Wildlife Conservation Plan for Migratory Shorebirds. [Online]. Canberra, ACT: Department of the Environment and Heritage. Available from: http://www.environment.gov.au/biodiversity/migratory/publications/pubs/shorebird-plan-background.pdf.

Australian Government Department of the Environment and Heritage (AGDEH) (2006f). Wildlife Conservation Plan for Migratory Shorebirds. [Online]. Canberra, ACT: Department of the Environment and Heritage. Available from: http://www.environment.gov.au/biodiversity/migratory/publications/shorebird-plan.html.

Bamford M., D. Watkins, W. Bancroft, G. Tischler & J. Wahl (2008). Migratory Shorebirds of the East Asian - Australasian Flyway: Population estimates and internationally important sites. [Online]. Canberra, ACT: Department of the Environment, Water, Heritage and the Arts, Wetlands International-Oceania. Available from: http://www.environment.gov.au/biodiversity/migratory/publications/shorebirds-east-asia.html.

Barter, M.A. (2002). Shorebirds of the Yellow Sea: Importance, Threats and Conservation Status. Wetlands International Global Series No. 8, International Wader Studies 12. Canberra, ACT: Wetlands International.

Barter, M.A. (2005c). Yellow Sea-driven priorities for Australian shorebird researchers. In: Straw, P., ed. Status and Conservation of Shorebirds in the East Asian-Australasian Flyway. Proceedings of the Australasian Shorebirds Conference 13-15 December 2003, Canberra, Australia. Sydney, NSW: Wetlands International Global Series 18, International Wader Studies 17.

Barter, M.A., D. Tonkinson, J.Z. Lu, S.Y. Zhu, Y. Kong, T.H. Wang, Z.W. Li & X.M. Meng (1998). Shorebird numbers in the Huang He (Yellow River) Delta during the 1997 northward migration. Stilt. 33:15-26.

Barter, M.A., K. Gosbell, L. Cao & Q. Xu (2005). Northward shorebird migration surveys in 2005 at four new Yellow Sea sites in Jiangsu and Liaoning Provinces. Stilt. 48:13-17.

Davidson, N. & P. Rothwell (1993). Disturbance to waterfowl on estuaries. Wader Study Group Bulletin. 68.

Dening, J. (2005). Roost management in south-East Queensland: building partnerships to replace lost habitat. In: Straw, P., ed. Status and Conservation of Shorebirds in the East Asian-Australasian Flyway. Proceedings of the Australasian Shorebirds Conference 13-15 December 2003. Page(s) 94-96. Sydney, NSW. Wetlands International Global Series 18, International Wader Studies 17.

Department of the Environment, Water, Heritage and the Arts (DEWHA) (2007e). Migratory Waterbirds Information Page, Departmental Website. [Online]. Available from: http://www.environment.gov.au/biodiversity/migratory/waterbirds/index.html#conservation.

Department of the Environment, Water, Heritage and the Arts (DEWHA) (2009aj). Draft Significant impact guidelines for 36 migratory shorebirds Draft EPBC Act Policy Statement 3.21. [Online]. Canberra, ACT: Commonwealth of Australia. Available from: http://www.environment.gov.au/epbc/publications/migratory-shorebirds.html.

Ge, Z.-M., T-H. Wang, X. Zhou, K.-Y. Wang & W.-Y. Shi (2007). Changes in the spatial distribution of migratory shorebirds along the Shanghai shoreline, China, between 1984 and 2004. Emu. 107:19-27.

Harding, S.B., J.R. Wilson & D.W. Geering (2007). Threats to shorebirds and conservation actions. In: Geering, A., L. Agnew & S. Harding, eds. Shorebirds of Australia. Page(s) 197-213. Melbourne, Victoria: CSIRO Publishing.

Higgins, P.J. & S.J.J.F. Davies, eds (1996). Handbook of Australian, New Zealand and Antarctic Birds. Volume Three - Snipe to Pigeons. Melbourne, Victoria: Oxford University Press.

Melville, D.S. (1997). Threats to waders along the East Asian-Australasian Flyway. In: Straw, P., ed. Shorebird conservation in the Asia-Pacific region. Page(s) 15-34. Melbourne, Victoria: Birds Australia.

Ming, M., L. Jianjian, T. Chengjia, S. Pingyue & H. Wei (1998). The contribution of shorebirds to the catches of hunters in the Shanghai area, China, during 1997-1998. Stilt. 33:32-36.

Partnership for the East Asian-Australasian Flyway (Partnership EAAF) (2008). East Asian-Australasian Flyway Site Network: October 2008. [Online]. Available from: http://www.eaaflyway.net/documents/Flyway-Network-Sites-Oct-08.pdf.

Round, P.D. (2006). Shorebirds in the Inner Gulf of Thailand. Stilt. 50:96-102.

Straw, P. (1992a). Relocation of Shorebirds. A Feasibility Study and Management Options. Sydney, NSW: Unpublished report by the Royal Australasian Ornithologists Union for the Federal Airports Corporation.

Straw, P. (1999). Habitat remediation - a last resort?. Stilt. 35:66.

Wei, D.L.Z., Y.C. Aik, L.K. Chye, K. Kumar, L.A. Tiah, Y. Chong & C.W. Mun (2006). Shorebird survey of the Malaysian coast November 2004-April 2005. Stilt. 49:7-18.

EPBC Act email updates can be received via the Communities for Communities newsletter and the EPBC Act newsletter.

This database is designed to provide statutory, biological and ecological information on species and ecological communities, migratory species, marine species, and species and species products subject to international trade and commercial use protected under the Environment Protection and Biodiversity Conservation Act 1999 (the EPBC Act). It has been compiled from a range of sources including listing advice, recovery plans, published literature and individual experts. While reasonable efforts have been made to ensure the accuracy of the information, no guarantee is given, nor responsibility taken, by the Commonwealth for its accuracy, currency or completeness. The Commonwealth does not accept any responsibility for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the information contained in this database. The information contained in this database does not necessarily represent the views of the Commonwealth. This database is not intended to be a complete source of information on the matters it deals with. Individuals and organisations should consider all the available information, including that available from other sources, in deciding whether there is a need to make a referral or apply for a permit or exemption under the EPBC Act.

Citation: Department of the Environment (2014). Phalaropus lobatus in Species Profile and Threats Database, Department of the Environment, Canberra. Available from: http://www.environment.gov.au/sprat. Accessed Thu, 2 Oct 2014 16:51:38 +1000.